Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 4-{2-[5-(3,5-Difluorophenyl)-2-methylthiophen-3-yl]-3,3,4,4,5,5-hexafluorocyclopent-1-en-1-yl}-1,5-dimethylpyrrole-2-carbonitrile

#### Gang Liu, Xiao-mei Wang\* and Cong-bin Fan

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China Correspondence e-mail: fan200203@163.com

Received 27 February 2011; accepted 15 March 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.108; data-to-parameter ratio = 12.5.

In the title compound,  $C_{23}H_{14}F_8N_2S$ , the dihedral angles between the pyrrole and thiophene groups and the almost planar C-C=C-C unit of the cyclopentene ring (r.m.s. deviation = 0.4193 Å) are 43.6 (5) and 50.1 (2)°, respectively. The distance of 3.612 (3) Å between the potentially reactive C atoms of the two heteroaryl substituents is short enough to enable a photocyclization reaction.

#### **Related literature**

The title compound belongs to a new family of organic photochromic diarylethene compounds with an unsymmetrically substituted hexafluorocyclopentene unit. For background to these compounds, see: Pu et al. (2007); Liu et al. (2011). For details of the synthesis, see: Fan et al. (2011).



### **Experimental**

#### Crystal data

| $C_{23}H_{14}F_8N_2S$           | V = 2191.9 (7) Å <sup>3</sup>     |
|---------------------------------|-----------------------------------|
| $M_r = 502.42$                  | Z = 4                             |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation            |
| a = 11.873 (2) Å                | $\mu = 0.23 \text{ mm}^{-1}$      |
| b = 12.063 (2)  Å               | T = 294  K                        |
| c = 16.208 (3)  Å               | $0.24 \times 0.20 \times 0.12$ mm |
| $\beta = 109.225 \ (3)^{\circ}$ |                                   |
|                                 |                                   |

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.947, \ T_{\max} = 0.973$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$  $wR(F^2) = 0.108$ S = 1.003870 reflections

10859 measured reflections 3870 independent reflections 2075 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.052$ 

310 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 50673070, 50973077), the Natural Science Foundation of Jiangxi Province (2010GZH0040) and the Science and Technology Development Project of Suzhou (SYJG0931).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2352).

#### References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, C.-B., Yang, P., Wang, X.-M., Liu, G., Jiang, X.-X., Chen, H.-Z., Tao, X.-T., Wang, M. & Jiang, M.-H. (2011). Sol. Energy Mater. Sol. Cells, 95, 992-1000.

Liu, G., Pu, S.-Z., Wang, X.-M., Liu, W.-J. & Yang, T.-S. (2011). Dyes Pigments, 90, 71-81.

- Pu, S.-Z., Liu, G., Shen, L. & Xu, J.-K. (2007). Org. Lett., 9, 2139-2142. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o939 [doi:10.1107/S1600536811009780]

# 4-{2-[5-(3,5-Difluorophenyl)-2-methylthiophen-3-yl]-3,3,4,4,5,5-hexafluorocyclopent-1-en-1-yl}-1,5-dimethylpyrrole-2-carbonitrile

#### G. Liu, X. Wang and C. Fan

#### Comment

The title compound when dissolved in hexane shows photochromism. Upon irradiation with 365 nm light, the colorless hexane solution turns blue rapidly. The blue compound displays an absorption maximum at 592 nm. Upon irradiation with visible light with wavelength longer than 510 nm, the blue hexane solution reverts to its initial colorless state; a colorless hexane solution of the title compound has two absorption maximum at 253 nm and 294 nm. In a polymethylmethacrylate amorphous film, the title diarylethene also exhibits photochromism similar to that in hexane.

#### **Experimental**

To a tetrahydrofuran solution of 1-bromo-3,5-difluorobenzene (1.93 g, 10.0 mmol) was added 3-bromo-2-methyl-5-thienylboronic acid (2.50 g, 11.3 mmol) (Fan *et al.*, 2011) in the presence of Pd(PPh<sub>3</sub>)<sub>4</sub> (0.3 g) and Na<sub>2</sub>CO<sub>3</sub> (6.4 g, 60 mmol) in 20 ml H<sub>2</sub>O. After refluxing for 15 h, the product, 3-Bromo-2-methyl-5-(3,5-difluorophenyl)thiophene (1.94 g, 6.73 mmol), was collected and dried (yield 67.3%). This compound (0.67 g, 2.3 mmol) was reacted with 1-(2-cyano-1,5-dimethyl-4-pyrrol-1-yl)-3,3,4,4,5,5- hexafluorocyclopent-1-ene (0.66 g, 2.30 mmol)(Liu *et al.*, 2011) and with *n*-butyl lithium 2.5 *M* in hexane (0.92 ml, 2.30 mmol) at 195 K under a nitrogen atmosphere. After an hour, the reaction was quenched by addition of water. The solid product was purified by column chromatography on silica with petroleum ether as the eluent to give the title compound (0.55 g, 1.10 mmol) in 47.8% yield. Analysis calc. for C<sub>23</sub>H<sub>14</sub>F<sub>8</sub>N<sub>2</sub>S: C 54.98, H, 2.81%; fFound C 55.02, H 2.95%.

#### Refinement

All H atoms were placed in calculated positions with C—H equal 0.93 Å for aromatic and 0.96 Å for CH<sub>3</sub> groups. They were included in the refinement in the riding model approximation with isotropic displacement parameters set equal to  $1.2U_{eq}(C)$  and  $1.5U_{eq}(C)$  of the carrier atom for the aromatic and methyl H atoms, respectively.

#### **Figures**



Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

## 4-{2-[5-(3,5-Difluorophenyl)-2-methylthiophen-3-yl]-3,3,4,4,5,5- hexafluorocyclopent-1-en-1-yl}-1,5-dimethyl-pyrrole-2-carbonitrile

F(000) = 1016

 $\theta=2.2{-}21.0^\circ$ 

 $\mu = 0.23 \text{ mm}^{-1}$ 

Block, colourless

 $0.24\times0.20\times0.12~mm$ 

T = 294 K

 $D_{\rm x} = 1.523 \ {\rm Mg \ m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 1969 reflections

#### Crystal data

C<sub>23</sub>H<sub>14</sub>F<sub>8</sub>N<sub>2</sub>S  $M_r = 502.42$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 11.873 (2) Å b = 12.063 (2) Å c = 16.208 (3) Å β = 109.225 (3)° V = 2191.9 (7) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker SMART CCD area-detector<br>diffractometer               | 3870 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2075 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.052$                                                     |
| $\phi$ and $\omega$ scans                                      | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -13 \rightarrow 14$                                                  |
| $T_{\min} = 0.947, \ T_{\max} = 0.973$                         | $k = -14 \rightarrow 7$                                                   |
| 10859 measured reflections                                     | $l = -19 \rightarrow 17$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.045$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.108$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.00                 | $w = 1/[\sigma^2(F_o^2) + (0.0294P)^2 + 1.1725P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 3870 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 310 parameters                  | $\Delta \rho_{\text{max}} = 0.22 \text{ e} \text{ Å}^{-3}$                          |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.23 \ e \ {\rm \AA}^{-3}$                                |
|                                 |                                                                                     |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x            | У            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|---------------|---------------------------|
| S1   | 0.20592 (8)  | 0.64459 (8)  | 0.08798 (6)   | 0.0544 (3)                |
| F1   | -0.1023 (3)  | 0.5715 (2)   | -0.22785 (15) | 0.1251 (10)               |
| F2   | -0.3477 (2)  | 0.7314 (2)   | -0.08674 (16) | 0.1138 (9)                |
| F3   | 0.12870 (18) | 1.04692 (16) | 0.16690 (13)  | 0.0782 (7)                |
| F4   | 0.31802 (19) | 1.04374 (18) | 0.19007 (13)  | 0.0794 (7)                |
| F5   | 0.1543 (2)   | 1.10471 (19) | 0.32403 (14)  | 0.0904 (7)                |
| F6   | 0.3169 (2)   | 1.17628 (17) | 0.31582 (13)  | 0.0908 (8)                |
| F7   | 0.3056 (2)   | 1.01110 (17) | 0.45684 (13)  | 0.0798 (7)                |
| F8   | 0.44533 (17) | 1.01423 (16) | 0.39904 (12)  | 0.0738 (6)                |
| N1   | 0.2949 (2)   | 0.6232 (2)   | 0.45199 (17)  | 0.0506 (7)                |
| N2   | 0.5482 (3)   | 0.5675 (3)   | 0.6326 (2)    | 0.0928 (12)               |
| C1   | -0.1419 (3)  | 0.7236 (3)   | -0.0150 (2)   | 0.0584 (10)               |
| H1   | -0.1522      | 0.7596       | 0.0328        | 0.070*                    |
| C2   | -0.2385 (3)  | 0.7008 (4)   | -0.0874 (3)   | 0.0714 (12)               |
| C3   | -0.2293 (4)  | 0.6494 (3)   | -0.1595 (3)   | 0.0772 (13)               |
| Н3   | -0.2957      | 0.6352       | -0.2082       | 0.093*                    |
| C4   | -0.1168 (4)  | 0.6197 (3)   | -0.1564 (3)   | 0.0771 (12)               |
| C5   | -0.0167 (3)  | 0.6391 (3)   | -0.0855 (2)   | 0.0630 (10)               |
| Н5   | 0.0580       | 0.6165       | -0.0860       | 0.076*                    |
| C6   | -0.0287 (3)  | 0.6927 (3)   | -0.0134 (2)   | 0.0485 (9)                |
| C7   | 0.0764 (3)   | 0.7213 (3)   | 0.06179 (19)  | 0.0442 (8)                |
| C8   | 0.0902 (3)   | 0.8070 (3)   | 0.11854 (19)  | 0.0477 (9)                |
| H8   | 0.0303       | 0.8583       | 0.1150        | 0.057*                    |
| C9   | 0.2049 (3)   | 0.8111 (3)   | 0.18408 (18)  | 0.0433 (8)                |
| C10  | 0.2779 (3)   | 0.7270 (3)   | 0.17555 (19)  | 0.0459 (8)                |
| C11  | 0.4044 (3)   | 0.7020 (3)   | 0.2296 (2)    | 0.0637 (10)               |
| H11A | 0.4424       | 0.7685       | 0.2578        | 0.096*                    |
| H11B | 0.4464       | 0.6739       | 0.1925        | 0.096*                    |
| H11C | 0.4053       | 0.6475       | 0.2729        | 0.096*                    |
| C12  | 0.2404 (2)   | 0.8972 (3)   | 0.25172 (19)  | 0.0425 (8)                |
| C13  | 0.2332 (3)   | 1.0168 (3)   | 0.2267 (2)    | 0.0513 (9)                |
| C14  | 0.2579 (3)   | 1.0803 (3)   | 0.3117 (2)    | 0.0552 (9)                |
| C15  | 0.3261 (3)   | 0.9968 (3)   | 0.3807 (2)    | 0.0515 (9)                |
| C16  | 0.2898 (2)   | 0.8857 (3)   | 0.33946 (19)  | 0.0412 (8)                |
| C17  | 0.3125 (3)   | 0.7868 (3)   | 0.39402 (18)  | 0.0421 (8)                |
| C18  | 0.2400 (3)   | 0.6945 (3)   | 0.3864 (2)    | 0.0458 (8)                |
| C19  | 0.1198 (3)   | 0.6706 (3)   | 0.3228 (2)    | 0.0636 (10)               |
| H19A | 0.1270       | 0.6179       | 0.2804        | 0.095*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

## supplementary materials

| H19B | 0.0852     | 0.7379     | 0.2938     | 0.095*      |
|------|------------|------------|------------|-------------|
| H19C | 0.0697     | 0.6405     | 0.3532     | 0.095*      |
| C20  | 0.4144 (3) | 0.7692 (3) | 0.4683 (2) | 0.0487 (9)  |
| H20  | 0.4781     | 0.8178     | 0.4902     | 0.058*      |
| C21  | 0.4025 (3) | 0.6688 (3) | 0.5020(2)  | 0.0503 (9)  |
| C22  | 0.4826 (4) | 0.6117 (3) | 0.5744 (3) | 0.0648 (10) |
| C23  | 0.2477 (3) | 0.5162 (3) | 0.4684 (2) | 0.0763 (12) |
| H23A | 0.1777     | 0.5282     | 0.4845     | 0.115*      |
| H23B | 0.3070     | 0.4786     | 0.5150     | 0.115*      |
| H23C | 0.2274     | 0.4717     | 0.4165     | 0.115*      |
|      |            |            |            |             |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0588 (6)  | 0.0534 (6)  | 0.0508 (5)  | 0.0051 (5)   | 0.0180 (4)   | -0.0076 (5)  |
| F1  | 0.156 (2)   | 0.127 (2)   | 0.0683 (16) | -0.0037 (19) | 0.0043 (16)  | -0.0514 (16) |
| F2  | 0.0529 (15) | 0.164 (3)   | 0.1049 (18) | -0.0014 (16) | -0.0008 (13) | 0.0156 (18)  |
| F3  | 0.0771 (15) | 0.0648 (14) | 0.0678 (13) | 0.0198 (11)  | -0.0099 (11) | -0.0011 (11) |
| F4  | 0.0955 (17) | 0.0751 (16) | 0.0794 (15) | -0.0045 (13) | 0.0449 (13)  | 0.0115 (12)  |
| F5  | 0.0856 (17) | 0.0976 (19) | 0.0857 (16) | 0.0291 (14)  | 0.0254 (13)  | -0.0200 (14) |
| F6  | 0.1210 (19) | 0.0524 (14) | 0.0784 (15) | -0.0257 (13) | 0.0048 (13)  | 0.0062 (12)  |
| F7  | 0.1296 (19) | 0.0614 (14) | 0.0532 (13) | -0.0118 (13) | 0.0366 (13)  | -0.0117 (11) |
| F8  | 0.0577 (13) | 0.0680 (14) | 0.0752 (14) | -0.0230 (11) | -0.0058 (10) | 0.0032 (12)  |
| N1  | 0.0634 (19) | 0.0405 (17) | 0.0494 (17) | -0.0112 (15) | 0.0208 (15)  | -0.0042 (15) |
| N2  | 0.102 (3)   | 0.081 (3)   | 0.075 (2)   | 0.010 (2)    | 0.002 (2)    | 0.016 (2)    |
| C1  | 0.056 (2)   | 0.068 (3)   | 0.046 (2)   | -0.007 (2)   | 0.0096 (18)  | 0.0015 (19)  |
| C2  | 0.057 (3)   | 0.078 (3)   | 0.066 (3)   | -0.015 (2)   | 0.003 (2)    | 0.018 (2)    |
| C3  | 0.085 (3)   | 0.065 (3)   | 0.055 (3)   | -0.022 (3)   | -0.013 (2)   | 0.006 (2)    |
| C4  | 0.104 (4)   | 0.064 (3)   | 0.052 (3)   | -0.014 (3)   | 0.010 (3)    | -0.015 (2)   |
| C5  | 0.069 (2)   | 0.063 (3)   | 0.055 (2)   | -0.009 (2)   | 0.017 (2)    | -0.012 (2)   |
| C6  | 0.055 (2)   | 0.049 (2)   | 0.038 (2)   | -0.0065 (18) | 0.0112 (17)  | 0.0029 (17)  |
| C7  | 0.0455 (19) | 0.047 (2)   | 0.0369 (18) | -0.0029 (16) | 0.0097 (15)  | -0.0031 (17) |
| C8  | 0.0425 (19) | 0.052 (2)   | 0.0449 (19) | 0.0078 (16)  | 0.0097 (16)  | -0.0023 (18) |
| С9  | 0.0421 (19) | 0.050 (2)   | 0.0345 (18) | 0.0041 (17)  | 0.0083 (15)  | -0.0031 (16) |
| C10 | 0.0448 (19) | 0.053 (2)   | 0.0412 (19) | 0.0045 (17)  | 0.0163 (15)  | 0.0009 (17)  |
| C11 | 0.048 (2)   | 0.076 (3)   | 0.063 (2)   | 0.015 (2)    | 0.0135 (18)  | 0.000 (2)    |
| C12 | 0.0367 (18) | 0.050 (2)   | 0.0378 (19) | 0.0023 (16)  | 0.0078 (15)  | -0.0015 (17) |
| C13 | 0.044 (2)   | 0.057 (2)   | 0.048 (2)   | 0.0072 (18)  | 0.0083 (17)  | 0.0036 (19)  |
| C14 | 0.055 (2)   | 0.046 (2)   | 0.060 (2)   | -0.0015 (19) | 0.0124 (19)  | -0.0044 (19) |
| C15 | 0.053 (2)   | 0.050 (2)   | 0.045 (2)   | -0.0128 (18) | 0.0073 (17)  | -0.0046 (19) |
| C16 | 0.0323 (17) | 0.048 (2)   | 0.0430 (19) | -0.0066 (15) | 0.0118 (15)  | -0.0011 (17) |
| C17 | 0.0427 (19) | 0.046 (2)   | 0.0364 (18) | -0.0034 (17) | 0.0115 (15)  | -0.0006 (16) |
| C18 | 0.0460 (19) | 0.048 (2)   | 0.045 (2)   | -0.0111 (18) | 0.0171 (16)  | -0.0070 (18) |
| C19 | 0.055 (2)   | 0.069 (3)   | 0.064 (2)   | -0.023 (2)   | 0.0148 (18)  | -0.013 (2)   |
| C20 | 0.050 (2)   | 0.048 (2)   | 0.045 (2)   | -0.0089 (17) | 0.0101 (17)  | -0.0056 (18) |
| C21 | 0.052 (2)   | 0.051 (2)   | 0.045 (2)   | -0.0011 (19) | 0.0112 (17)  | -0.0002 (18) |
| C22 | 0.074 (3)   | 0.054 (2)   | 0.061 (3)   | 0.001 (2)    | 0.015 (2)    | 0.000 (2)    |
| C23 | 0.098 (3)   | 0.056 (2)   | 0.079 (3)   | -0.025 (2)   | 0.034 (2)    | 0.007 (2)    |

### *Geometric parameters (Å, °)*

| S1—C10     | 1.713 (3)  | С8—Н8       | 0.9300    |
|------------|------------|-------------|-----------|
| S1—C7      | 1.724 (3)  | C9—C10      | 1.370 (4) |
| F1—C4      | 1.357 (4)  | C9—C12      | 1.467 (4) |
| F2—C2      | 1.352 (4)  | C10—C11     | 1.499 (4) |
| F3—C13     | 1.349 (3)  | C11—H11A    | 0.9600    |
| F4—C13     | 1.366 (4)  | C11—H11B    | 0.9600    |
| F5—C14     | 1.343 (4)  | C11—H11C    | 0.9600    |
| F6—C14     | 1.343 (4)  | C12—C16     | 1.355 (4) |
| F7—C15     | 1.345 (4)  | C12—C13     | 1.494 (4) |
| F8—C15     | 1.364 (3)  | C13—C14     | 1.518 (4) |
| N1—C18     | 1.357 (4)  | C14—C15     | 1.524 (5) |
| N1—C21     | 1.381 (4)  | C15—C16     | 1.496 (4) |
| N1—C23     | 1.467 (4)  | C16—C17     | 1.457 (4) |
| N2—C22     | 1.139 (4)  | C17—C18     | 1.387 (4) |
| C1—C2      | 1.372 (5)  | C17—C20     | 1.414 (4) |
| C1—C6      | 1.387 (4)  | C18—C19     | 1.487 (4) |
| C1—H1      | 0.9300     | C19—H19A    | 0.9600    |
| C2—C3      | 1.359 (5)  | C19—H19B    | 0.9600    |
| C3—C4      | 1.367 (5)  | С19—Н19С    | 0.9600    |
| С3—Н3      | 0.9300     | C20—C21     | 1.355 (4) |
| C4—C5      | 1.375 (5)  | C20—H20     | 0.9300    |
| C5—C6      | 1.383 (4)  | C21—C22     | 1.422 (5) |
| С5—Н5      | 0.9300     | С23—Н23А    | 0.9600    |
| C6—C7      | 1.470 (4)  | С23—Н23В    | 0.9600    |
| С7—С8      | 1.357 (4)  | C23—H23C    | 0.9600    |
| C8—C9      | 1.426 (4)  |             |           |
| C10—S1—C7  | 93.06 (15) | F4—C13—C12  | 111.3 (3) |
| C18—N1—C21 | 108.7 (3)  | F3—C13—C14  | 112.0 (3) |
| C18—N1—C23 | 125.9 (3)  | F4          | 109.0 (3) |
| C21—N1—C23 | 125.4 (3)  | C12-C13-C14 | 105.3 (3) |
| C2—C1—C6   | 119.6 (4)  | F5          | 107.0 (3) |
| C2-C1-H1   | 120.2      | F5-C14-C13  | 109.4 (3) |
| С6—С1—Н1   | 120.2      | F6—C14—C13  | 114.9 (3) |
| F2—C2—C3   | 118.7 (4)  | F5-C14-C15  | 109.1 (3) |
| F2—C2—C1   | 118.2 (4)  | F6—C14—C15  | 113.0 (3) |
| C3—C2—C1   | 123.1 (4)  | C13—C14—C15 | 103.3 (3) |
| C2—C3—C4   | 116.3 (4)  | F7—C15—F8   | 105.5 (3) |
| С2—С3—Н3   | 121.9      | F7—C15—C16  | 114.3 (3) |
| С4—С3—Н3   | 121.9      | F8—C15—C16  | 111.1 (3) |
| F1—C4—C3   | 118.6 (4)  | F7—C15—C14  | 112.1 (3) |
| F1—C4—C5   | 117.9 (4)  | F8—C15—C14  | 108.7 (3) |
| C3—C4—C5   | 123.4 (4)  | C16—C15—C14 | 105.0 (3) |
| C4—C5—C6   | 119.0 (4)  | C12—C16—C17 | 130.5 (3) |
| С4—С5—Н5   | 120.5      | C12—C16—C15 | 109.8 (3) |
| С6—С5—Н5   | 120.5      | C17—C16—C15 | 119.6 (3) |
| C5-C6-C1   | 118.6 (3)  | C18—C17—C20 | 106.7 (3) |

## supplementary materials

| C5—C6—C7       | 121.0 (3)  | C18—C17—C16     | 128.1 (3)  |
|----------------|------------|-----------------|------------|
| C1—C6—C7       | 120.3 (3)  | C20—C17—C16     | 125.1 (3)  |
| C8—C7—C6       | 128.4 (3)  | N1—C18—C17      | 108.3 (3)  |
| C8—C7—S1       | 110.1 (2)  | N1-C18-C19      | 121.6 (3)  |
| C6—C7—S1       | 121.5 (2)  | C17—C18—C19     | 130.0 (3)  |
| C7—C8—C9       | 113.8 (3)  | C18—C19—H19A    | 109.5      |
| С7—С8—Н8       | 123.1      | C18—C19—H19B    | 109.5      |
| С9—С8—Н8       | 123.1      | H19A—C19—H19B   | 109.5      |
| С10—С9—С8      | 112.3 (3)  | C18—C19—H19C    | 109.5      |
| C10-C9-C12     | 124.3 (3)  | H19A—C19—H19C   | 109.5      |
| C8—C9—C12      | 123.3 (3)  | H19B—C19—H19C   | 109.5      |
| C9—C10—C11     | 129.4 (3)  | C21—C20—C17     | 107.6 (3)  |
| C9—C10—S1      | 110.7 (2)  | С21—С20—Н20     | 126.2      |
| C11-C10-S1     | 119.8 (2)  | С17—С20—Н20     | 126.2      |
| C10-C11-H11A   | 109.5      | C20—C21—N1      | 108.6 (3)  |
| C10-C11-H11B   | 109.5      | C20—C21—C22     | 129.4 (3)  |
| H11A—C11—H11B  | 109.5      | N1—C21—C22      | 122.0 (3)  |
| C10-C11-H11C   | 109.5      | N2—C22—C21      | 178.8 (4)  |
| H11A—C11—H11C  | 109.5      | N1—C23—H23A     | 109.5      |
| H11B—C11—H11C  | 109.5      | N1—C23—H23B     | 109.5      |
| C16—C12—C9     | 129.1 (3)  | H23A—C23—H23B   | 109.5      |
| C16—C12—C13    | 110.4 (3)  | N1—C23—H23C     | 109.5      |
| C9—C12—C13     | 120.3 (3)  | H23A—C23—H23C   | 109.5      |
| F3—C13—F4      | 105.0 (3)  | H23B—C23—H23C   | 109.5      |
| F3—C13—C12     | 114.3 (3)  |                 |            |
| C6—C1—C2—F2    | 179.6 (3)  | C12—C13—C14—F6  | 146.1 (3)  |
| C6—C1—C2—C3    | -0.6 (6)   | F3—C13—C14—C15  | 147.3 (3)  |
| F2—C2—C3—C4    | -179.6 (3) | F4-C13-C14-C15  | -97.0 (3)  |
| C1—C2—C3—C4    | 0.6 (6)    | C12-C13-C14-C15 | 22.5 (3)   |
| C2-C3-C4-F1    | -177.8 (3) | F5-C14-C15-F7   | -32.5 (4)  |
| C2—C3—C4—C5    | 0.2 (6)    | F6-C14-C15-F7   | 86.4 (4)   |
| F1—C4—C5—C6    | 177.1 (3)  | C13—C14—C15—F7  | -148.8 (3) |
| C3—C4—C5—C6    | -0.9 (6)   | F5-C14-C15-F8   | -148.8 (3) |
| C4—C5—C6—C1    | 0.9 (5)    | F6-C14-C15-F8   | -29.9 (4)  |
| C4—C5—C6—C7    | -176.3 (3) | C13—C14—C15—F8  | 94.9 (3)   |
| C2-C1-C6-C5    | -0.2 (5)   | F5-C14-C15-C16  | 92.2 (3)   |
| C2—C1—C6—C7    | 177.0 (3)  | F6-C14-C15-C16  | -148.9 (3) |
| C5—C6—C7—C8    | 150.7 (3)  | C13—C14—C15—C16 | -24.1 (3)  |
| C1—C6—C7—C8    | -26.4 (5)  | C9—C12—C16—C17  | -6.6 (5)   |
| C5—C6—C7—S1    | -28.1 (4)  | C13—C12—C16—C17 | 178.4 (3)  |
| C1—C6—C7—S1    | 154.7 (3)  | C9—C12—C16—C15  | 172.1 (3)  |
| C10—S1—C7—C8   | 0.5 (3)    | C13—C12—C16—C15 | -2.9 (4)   |
| C10—S1—C7—C6   | 179.5 (3)  | F7—C15—C16—C12  | 140.7 (3)  |
| C6—C7—C8—C9    | -179.4 (3) | F8—C15—C16—C12  | -99.9 (3)  |
| S1—C7—C8—C9    | -0.5 (3)   | C14—C15—C16—C12 | 17.5 (4)   |
| C7—C8—C9—C10   | 0.3 (4)    | F7-C15-C16-C17  | -40.4 (4)  |
| C7—C8—C9—C12   | 179.3 (3)  | F8—C15—C16—C17  | 78.9 (4)   |
| C8—C9—C10—C11  | 179.3 (3)  | C14—C15—C16—C17 | -163.7 (3) |
| C12—C9—C10—C11 | 0.3 (5)    | C12—C16—C17—C18 | -40.4 (5)  |

| C8—C9—C10—S1    | 0.1 (3)    | C15-C16-C17-C18 | 141.1 (3)  |
|-----------------|------------|-----------------|------------|
| C12-C9-C10-S1   | -178.9 (2) | C12-C16-C17-C20 | 141.8 (3)  |
| C7—S1—C10—C9    | -0.3 (3)   | C15—C16—C17—C20 | -36.7 (4)  |
| C7—S1—C10—C11   | -179.6 (3) | C21—N1—C18—C17  | 0.0 (4)    |
| C10-C9-C12-C16  | -52.0 (5)  | C23—N1—C18—C17  | 179.1 (3)  |
| C8—C9—C12—C16   | 129.1 (3)  | C21—N1—C18—C19  | -177.9 (3) |
| C10-C9-C12-C13  | 122.7 (3)  | C23—N1—C18—C19  | 1.2 (5)    |
| C8—C9—C12—C13   | -56.2 (4)  | C20-C17-C18-N1  | -0.7 (3)   |
| C16—C12—C13—F3  | -136.2 (3) | C16-C17-C18-N1  | -178.8 (3) |
| C9—C12—C13—F3   | 48.3 (4)   | C20-C17-C18-C19 | 177.0 (3)  |
| C16—C12—C13—F4  | 105.1 (3)  | C16-C17-C18-C19 | -1.1 (6)   |
| C9—C12—C13—F4   | -70.5 (4)  | C18—C17—C20—C21 | 1.1 (4)    |
| C16-C12-C13-C14 | -12.9 (4)  | C16-C17-C20-C21 | 179.3 (3)  |
| C9—C12—C13—C14  | 171.6 (3)  | C17—C20—C21—N1  | -1.1 (4)   |
| F3-C13-C14-F5   | 31.2 (4)   | C17—C20—C21—C22 | 177.4 (3)  |
| F4-C13-C14-F5   | 146.9 (3)  | C18—N1—C21—C20  | 0.7 (4)    |
| C12-C13-C14-F5  | -93.6 (3)  | C23—N1—C21—C20  | -178.4 (3) |
| F3-C13-C14-F6   | -89.1 (4)  | C18—N1—C21—C22  | -178.0 (3) |
| F4-C13-C14-F6   | 26.6 (4)   | C23—N1—C21—C22  | 3.0 (5)    |



